College of Agricultural, Human, and Natural Resource Sciences

Plant Communication, Raspberry Future, Orchard Efficiency

Plant Communication Breakthrough

Traditional thought holds that a disease-causing organism has to penetrate a plant to initiate resistance. Now, two Washington State University scientists have established that a barley plant recognizes an invader and begins to marshal its defenses within five minutes of an attack. The discovery, along with the scientists’ successful cloning of barley’s disease-fighting gene and the pathogen’s signaling gene, could help to revolutionize the battle against cereal crop enemies such as stem rust. Unless carefully controlled, stem rust has the potential to destroy a grower’s entire crop.

Historically, stem rust has caused the loss of millions of bushels of grain and millions of dollars. Meanwhile, new threats are on the horizon. For example, Ug99 is an evolving wheat pathogen that poses a dangerous threat to global food security, especially in developing countries.

“Now that we understand how the plant pathogen interaction mechanism works, we hope we can manipulate it to build resistance in plants,” said Andy Kleinhofs, professor of molecular genetics in WSU’s Department of Crop and Soil Sciences. With further research, he added, that understanding could lead to new, more effective ways to battle crop diseases such as stem rust and Ug99.

Andy Kleinhofs and Jayaveeramuthu Nirmala.
Andy Kleinhofs and Jayaveeramuthu Nirmala. Photo by Brian Clark/WSU

“It will take time for research on Ug99 to see if the mechanism works the same as in this case,” Kleinhofs said. “If it is the same, we could use the technology to defeat Ug99.”

Kleinhofs and Assistant Research Professor Jayaveeramuthu Nirmala focused their research on understanding Rpg1, a gene that provides barley with resistance to the pathogen that causes stem rust. Rpg1 is unique in that it has provided durable resistance in barley over the past 60 years, Kleinhofs said. His laboratory team previously successfully cloned that resistance gene, which when combined with the recently discovered genes that activate it, delivers a one-two punch against stem rust.

It was while monitoring the activity of those combined genes that Kleinhofs and Nirmala observed and documented communication between the barley plants and stem rust spores. In the process, the researchers identified the proteins recognized by the Rpg1 resistance gene and saw the series of signals that tell the plant to protect itself. “It is clear that the plant recognizes the pathogen within five minutes of the spore touching the leaf,” said Camille Steber, a research geneticist for the U.S. Department of Agriculture’s Agricultural Research Service at WSU.

The plant’s initial reaction to attack is invisible to the human eye, Nirmala said, but she succeeded in monitoring subtle changes in plant chemistry that demonstrated the plant not only recognized it was under attack but was starting to muster its resistance. Visible signs of the stem rust spore’s impact come within an hour, when pad-like lesions connecting the spore to the leaf cell begin to appear.

A reviewer of Kleinhofs’ and Nirmala’s recent paper in the Proceedings of the National Academy of Sciences said the discovery “will probably open a whole new avenue of research of plant-pathogen interactions.” Steber said the discovery is a game-changer for plant scientists. “This is the first example where the lock-and-key of cereal-pathogen response is clearly understood,” she said.

Kleinhofs called his and Nirmala’s understanding of the signaling that was going on between plant and pathogen “one of those ‘Eureka!’ moments. There is still a lot to be learned,” he added. “As with any new discovery, more questions arise than have actually been answered, but it is a good start.”

–Kathy Barnard

For more information on research in the WSU Dept. of Crop and Soil Sciences, please visit

Mapping the Future of Raspberries

It takes a long time–14 years on average–to develop a new cultivar of red raspberry using traditional methods and, even then, breeders can’t always accomplish what growers and consumers want. Understanding consumer and grower needs and refining breeding processes to develop cultivars that meet those needs is the focus of a new nationwide grant being led by Washington State University.

Scientists at WSU Puyallup and the Pullman campus have received a $50,000 planning grant from the U.S. Department of Agriculture’s Specialty Crops Research Initiative to lead a team of researchers throughout the United States and Canada in gathering grower input. They’ll ask what the next cultivars of red raspberry should look like in terms of yields, fruit size, firmness, disease susceptibility and machine harvestability, among other things, and what they should taste like. The information they gather will set the stage for a much larger grant to actually bring the latest genomics and genetics research to bear on developing those cultivars.

Patrick Moore
Patrick Moore

“Taking the time to listen to consumer and grower needs and map out a plan absolutely will help speed up raspberry breeding,” said researcher Patrick Moore, a scientist stationed at WSU Puyallup, “but perhaps more importantly, we’ll be more likely to come up with the things we really need and want out of future cultivars. We’ll have a better product.”

Moore, along with Associate Professor and Sensory Scientist Carolyn Ross and Extension Specialist Catherine Daniels, will work with counterparts at Salve Regina University, University of Illinois, Brigham Young University, North Carolina State University, Cornell, USDA’s Agricultural Research Service and Agriculture and Agri-Food Canada to systematically seek and analyze input from red raspberry growers, processors and consumers. The first of those listening sessions/workshops will be held in Ohio in January.

One aspect of the sessions will be discussion of some of the costliest pests of red raspberries, such as root rot, raspberry bushy dwarf virus and nematodes. “All of these diseases are tailor-made to be addressed by the latest molecular techniques in use,” Moore said.

He noted that the team will work closely with currently funded efforts, such as USDA’s RosBREED project. RosBREED, a nationwide project that includes other WSU scientists, is focusing on marker-assisted breeding in rosaceaous crops such as apples, peaches, cherries and strawberries. Red raspberries, a part of the Rosaceae family, were not included in the RosBREED grant. “We will be working to develop similar techniques to RosBREED’s only tailored for red raspberries,” he said. “We want to complement their work and coordinate whenever possible.”

–Kathy Barnard

For more information on research WSU’s research center in Puyallup, please visit

New System Offers Promise of Improved Orchard Efficiency

Researchers are hot on the trail of innovations that will improve orchard efficiency.
Researchers are hot on the trail of innovations that will improve orchard efficiency.

While widely considered the world’s best, most consistently excellent source of apples, the Washington tree fruit industry now faces serious competition from growers in South America, China, and Europe. That’s why scientists at WSU have joined forces with researchers in New York and Michigan to develop an innovative system for the delivery of pesticides, fertilizers and other inputs vital to an orchard’s health.

Currently, to protect an orchard from a pest outbreak, a worker must drive a tractor hauling a sprayer up and down the rows of trees. As Jay Brunner, an entomologist and the director of WSU’s Tree Fruit Research and Extension Center in Wenatchee, pointed out, there are several inefficiencies in this scenario. The worst is that the orchard manager simply may not have enough equipment to cover a large orchard in a timely manner.

Enter the solid-set canopy delivery system. Like an orchard cooling system that sprays water over the entire roof of the orchard, the canopy delivery system would be built into the fixed (“solid-set”) trellis system in order to simultaneously deliver inputs orchard-wide.

“This system would remove tractor operators from close proximity with pesticides, so there would be even further reduction of health risks than there already is with our modern, soft pest control chemicals,” said Brunner, who is leading WSU’s efforts on the project. “We may also be able to get better efficacy from existing pest control materials by reducing chemical drift and application rates.” Improving efficacy and reducing pesticide application rates means lower costs for growers–and improved environmental safety for orchard workers as well as consumers.

Brunner said the solid-set canopy delivery project was based on a small-scale proof-of-concept demonstration done by ag engineers at Cornell University in New York and Michigan State University. Scientists from all three institutions are being funded by a two-year grant from USDA.

“We’re taking a three-pronged approach,” Brunner said. “There are engineering problems to work out, such as optimizing the design of emitters. We are collaborating with Qin Zhang and his team at the Center for Precision and Automated Agricultural Systems at WSU’s Irrigated Agriculture Research and Extension Center in Prosser.”

The emitters will need to blow spray up into tree foliage rather than onto the ground, and also be tested for drift. “We’ll add a dye to the spray,” Brunner said,” which will allow us to detect movement of spray off site. The dye will also enable us to quantify coverage within the orchard.” Zhang and his team have already developed sophisticated computer modeling techniques that will enable them to perform preliminary testing of proposed emitter designs in virtual orchards, thus cutting down costs and speeding up development time.

Another aspect of the project is economic. “Unless we can develop a system that beats the cost of the way things are done now, no one will adopt the technology,” Brunner said. He is hopeful that the new delivery method will be a winner. “Work in Michigan test plots indicates that large blocks could be treated in just a few minutes,” he said. The ability to treat 20 acres in minutes rather than hours would be a quantum leap in efficiency over tractor-delivered spraying.

The system should be able to do much more than deliver pest control chemicals, Brunner said. “We’re going to be looking at horticultural practices with our colleague Matt Whitting at WSU’s research center in Prosser,” he said. Blossom and fruit thinners, used to maintain optimal fruit size and quality, could also be delivered throughout large orchards using this system, as could sunburn protection and tree nutrients, adding further economic incentive for growers to adopt the system.

“We’re in the planning stages right now, with work beginning later this month,” Brunner said. “We are talking to industry professionals to see what they would want from this system, as well as to understand what they consider the barriers to adoption. And we’re talking with irrigation companies to get help with developing infrastructure and designing new emitters. Next spring, we’ll be installing what we’ve developed over the previous fall and winter in test plots here in Wenatchee as well as in Prosser, and possibly in commercial orchards.”

–Brian Clark

Learn more about the partnership between WSU and the Washington tree fruit industry by visiting

Leave a Reply

Neither your email address nor comment will be published. Required fields are marked *

CAHNRS is more than agriculture. With 24 majors, 19 minors, and 27 graduate level programs, we are one of the largest, most diverse colleges at WSU. CAHNRS Cougs are making a difference in the wellbeing of individuals, families, and communities, improving ecological and economic systems, and advancing agricultural sciences.

Featured Event

Illustration of a woman holding wine near a music band. Text over the image reads: The Auction of Washington Wines Wine and Music Festival, WSU Tri-Cities Campus, June 10, Saturday 6 pm. Learn More. Support Wine.



With 24 majors, 19 minors, and 27 graduate level programs, CAHNRS is one of the largest, most diverse colleges at WSU.


CAHNRS students are awarded more than $600,000 in scholarships annually.


CAHNRS leads in discovery through its high-quality research programs. In 2014, CAHNRS received research funding exceeding $81.5M. This accounts for nearly 40% of all research funding received by WSU.  


CAHNRS has 39 student clubs and organizations to enhance student experiences and opportunities.

Job Opportunities

4-H Youth Development Program Associate Director (pdf)
Position # 124955

CAHNRS Academic Programs

Fall undergradsUndergraduate Studies

Check out what our academic departments and programs have to offer, from Interior Design to Agriculture to Wildlife Ecology. We have 13 departments and schools to prepare you for your chosen career.

Grad student dogGraduate Studies

Students have a variety of options to pursue masters and doctoral degrees. Many of these have very specific background requirements, so we suggest exploring the individual programs for academic guidelines.

CTLLCenter for
Learning & Leadership

The CTLL is a student, faculty, alumni and industry partner collaboration for high quality learning and leadership beyond the classroom.


Inspiring Teamwork - Arron Carter pic

Inspiring Teamwork – Arron Carter

It started with a car, a ’69 Corvette Stingray to be exact.

When Arron Carter, the director of the Washington State University Winter Wheat Breeding Program, was in high school his agricultural teacher had a ’69 Corvette Stingray. Every year this teacher would let his favorite senior take the car to senior prom. Carter had never taken an agriculture class before, but he knew he wanted to drive that car.

“Well, if I’m going to be the favorite senior,” Carter said to himself, “I’d better start taking some ag classes.”…

Read More: Inspiring Teamwork – Arron Carter


CAHNRS Office of Research

Agricultural Research Center

Mission Statement

The goal of the Washington State University CAHNRS Office of Research is to promote research beneficial to the citizens of Washington. The Office of Research recognizes its unique land-grant research mission to the people of Washington and their increasing global connections. The CAHNRS Office of Research provides leadership in discovering and applying knowledge through high-quality research that contributes to a safe and abundant food, fiber, and energy supply while enhancing the sustainability of agricultural and natural resource systems.

Research Update

Washington State University’s screening continues to find no evidence of glyphosate herbicide resistance in Pacific Northwest wheat varieties

In each of the last three years (2014, 2015 and 2016), the field screening process has involved over 80 varieties, 2,000 advanced breeding lines and more than 35,000 individual plots from WSU cereal breeding and variety evaluation programs. Collectively, varieties included in these trials represent over 95 percent of the wheat acreage planted in Washington.

Featured Research

Want fries with that? Stealth potato virus threatens industry

Newly emerged viruses threaten the U.S. potato industry, including potatoes grown in Washington. Several newly evolved strains of the disease known as potato virus Y, or PVY, can render potatoes unmarketable and reduce crop yield. What’s worse is the new viruses are particularly difficult to detect with the naked eye.

Horned larks undeterred by efforts to protect canola seedlings

Horned larks are turning up in droves near Lind, Wash. and decimating newly planted winter and spring canola fields despite multiple efforts to deter them.

In search of the perfect steak

Imagine taking your first bite of a $40 rib-eye steak—only to chew on beef that’s as tough as shoe leather. Talk about disappointment! “A tough steak is not a pleasant experience,” says Frank Hendrix, a WSU Extension Educator and animal scientist.

Workshops to discuss changing water forecast for Columbia Basin

How changing water availability in the Columbia River Basin could affect people, farms and fish is the focus of a series of free public workshops in June. Scheduled for June 21, 22 and 23 in Richland, Wenatchee and Spokane, the workshops give a first look at the 2016 Columbia River Basin Long-Term Water Supply and Demand Forecast.

After landslide, communities rewarded for resilience

Two years after the deadly landslide that devastated the Oso, Wash., area, the towns of Darrington and Arlington were announced April 27 as finalists in the America’s Best Communities (ABC) competition.

$11M funds food safety tech transfer to markets

WSU aims to meet growing demand for safe, high quality, additive-free packaged foods thanks to two recent investments in innovative food processing technology based on microwave energy.

Alumni & Friends

Welcome to alumni, friends, and supporters of the College of Agricultural, Human, and Natural Resource Sciences (CAHNRS). You are a core part of our CAHNRS Coug family and have made major impacts in our college, communities, and throughout the world. We recognize only a handful of them here.

More than 9,000 alumni and friends contributed to our Campaign for WSU, the most ambitious fundraising effort in university history. The campaign concluded in 2015 with $215 million and endless amounts of impact. Here is a glimpse of what transpired in the Campaign.

Although the campaign concluded, momentum continues to make a difference in our land-grant mission and education. On-going investment in time and resources from our alumni and friends helps to advance our best programs, attract the most talented faculty, and support our brightest students.

There are so many ways to stay involved with CAHNRS. Share your news in the college’s magazine ReConnect. Get involved with student success or support our college as whole by making a gift to the CAHNRS Excellence Fund.


Contact Us

CAHNRS Alumni & Development
PO Box 646228
Pullman, WA 99164-6228
PH: 509-335-2243

Faculty & Staff

Important Dates and Deadlines


A-Z Index of Faculty and Staff Resources:

  • Click letters to sort alphabetically
  • Click individual items to view or download

Contact Dean’s Office:
Hulbert 421
PO Box 646242
Pullman WA 99164-6242

Lisa Johnson:
Assistant to the Dean
Hulbert 421C
PO Box 646242
Pullman WA 99164-6242

How many varieties of wheat has WSU developed?



Sentence or two with more info about the subject.