College of Agricultural, Human, and Natural Resource Sciences

Plant Communication, Raspberry Future, Orchard Efficiency

Plant Communication Breakthrough

Traditional thought holds that a disease-causing organism has to penetrate a plant to initiate resistance. Now, two Washington State University scientists have established that a barley plant recognizes an invader and begins to marshal its defenses within five minutes of an attack. The discovery, along with the scientists’ successful cloning of barley’s disease-fighting gene and the pathogen’s signaling gene, could help to revolutionize the battle against cereal crop enemies such as stem rust. Unless carefully controlled, stem rust has the potential to destroy a grower’s entire crop.

Historically, stem rust has caused the loss of millions of bushels of grain and millions of dollars. Meanwhile, new threats are on the horizon. For example, Ug99 is an evolving wheat pathogen that poses a dangerous threat to global food security, especially in developing countries.

“Now that we understand how the plant pathogen interaction mechanism works, we hope we can manipulate it to build resistance in plants,” said Andy Kleinhofs, professor of molecular genetics in WSU’s Department of Crop and Soil Sciences. With further research, he added, that understanding could lead to new, more effective ways to battle crop diseases such as stem rust and Ug99.

Andy Kleinhofs and Jayaveeramuthu Nirmala.
Andy Kleinhofs and Jayaveeramuthu Nirmala. Photo by Brian Clark/WSU

“It will take time for research on Ug99 to see if the mechanism works the same as in this case,” Kleinhofs said. “If it is the same, we could use the technology to defeat Ug99.”

Kleinhofs and Assistant Research Professor Jayaveeramuthu Nirmala focused their research on understanding Rpg1, a gene that provides barley with resistance to the pathogen that causes stem rust. Rpg1 is unique in that it has provided durable resistance in barley over the past 60 years, Kleinhofs said. His laboratory team previously successfully cloned that resistance gene, which when combined with the recently discovered genes that activate it, delivers a one-two punch against stem rust.

It was while monitoring the activity of those combined genes that Kleinhofs and Nirmala observed and documented communication between the barley plants and stem rust spores. In the process, the researchers identified the proteins recognized by the Rpg1 resistance gene and saw the series of signals that tell the plant to protect itself. “It is clear that the plant recognizes the pathogen within five minutes of the spore touching the leaf,” said Camille Steber, a research geneticist for the U.S. Department of Agriculture’s Agricultural Research Service at WSU.

The plant’s initial reaction to attack is invisible to the human eye, Nirmala said, but she succeeded in monitoring subtle changes in plant chemistry that demonstrated the plant not only recognized it was under attack but was starting to muster its resistance. Visible signs of the stem rust spore’s impact come within an hour, when pad-like lesions connecting the spore to the leaf cell begin to appear.

A reviewer of Kleinhofs’ and Nirmala’s recent paper in the Proceedings of the National Academy of Sciences said the discovery “will probably open a whole new avenue of research of plant-pathogen interactions.” Steber said the discovery is a game-changer for plant scientists. “This is the first example where the lock-and-key of cereal-pathogen response is clearly understood,” she said.

Kleinhofs called his and Nirmala’s understanding of the signaling that was going on between plant and pathogen “one of those ‘Eureka!’ moments. There is still a lot to be learned,” he added. “As with any new discovery, more questions arise than have actually been answered, but it is a good start.”

–Kathy Barnard

For more information on research in the WSU Dept. of Crop and Soil Sciences, please visit http://css.wsu.edu/.

Mapping the Future of Raspberries

It takes a long time–14 years on average–to develop a new cultivar of red raspberry using traditional methods and, even then, breeders can’t always accomplish what growers and consumers want. Understanding consumer and grower needs and refining breeding processes to develop cultivars that meet those needs is the focus of a new nationwide grant being led by Washington State University.

Scientists at WSU Puyallup and the Pullman campus have received a $50,000 planning grant from the U.S. Department of Agriculture’s Specialty Crops Research Initiative to lead a team of researchers throughout the United States and Canada in gathering grower input. They’ll ask what the next cultivars of red raspberry should look like in terms of yields, fruit size, firmness, disease susceptibility and machine harvestability, among other things, and what they should taste like. The information they gather will set the stage for a much larger grant to actually bring the latest genomics and genetics research to bear on developing those cultivars.

Patrick Moore
Patrick Moore

“Taking the time to listen to consumer and grower needs and map out a plan absolutely will help speed up raspberry breeding,” said researcher Patrick Moore, a scientist stationed at WSU Puyallup, “but perhaps more importantly, we’ll be more likely to come up with the things we really need and want out of future cultivars. We’ll have a better product.”

Moore, along with Associate Professor and Sensory Scientist Carolyn Ross and Extension Specialist Catherine Daniels, will work with counterparts at Salve Regina University, University of Illinois, Brigham Young University, North Carolina State University, Cornell, USDA’s Agricultural Research Service and Agriculture and Agri-Food Canada to systematically seek and analyze input from red raspberry growers, processors and consumers. The first of those listening sessions/workshops will be held in Ohio in January.

One aspect of the sessions will be discussion of some of the costliest pests of red raspberries, such as root rot, raspberry bushy dwarf virus and nematodes. “All of these diseases are tailor-made to be addressed by the latest molecular techniques in use,” Moore said.

He noted that the team will work closely with currently funded efforts, such as USDA’s RosBREED project. RosBREED, a nationwide project that includes other WSU scientists, is focusing on marker-assisted breeding in rosaceaous crops such as apples, peaches, cherries and strawberries. Red raspberries, a part of the Rosaceae family, were not included in the RosBREED grant. “We will be working to develop similar techniques to RosBREED’s only tailored for red raspberries,” he said. “We want to complement their work and coordinate whenever possible.”

–Kathy Barnard

For more information on research WSU’s research center in Puyallup, please visit http://www.puyallup.wsu.edu/.

New System Offers Promise of Improved Orchard Efficiency

Researchers are hot on the trail of innovations that will improve orchard efficiency.
Researchers are hot on the trail of innovations that will improve orchard efficiency.

While widely considered the world’s best, most consistently excellent source of apples, the Washington tree fruit industry now faces serious competition from growers in South America, China, and Europe. That’s why scientists at WSU have joined forces with researchers in New York and Michigan to develop an innovative system for the delivery of pesticides, fertilizers and other inputs vital to an orchard’s health.

Currently, to protect an orchard from a pest outbreak, a worker must drive a tractor hauling a sprayer up and down the rows of trees. As Jay Brunner, an entomologist and the director of WSU’s Tree Fruit Research and Extension Center in Wenatchee, pointed out, there are several inefficiencies in this scenario. The worst is that the orchard manager simply may not have enough equipment to cover a large orchard in a timely manner.

Enter the solid-set canopy delivery system. Like an orchard cooling system that sprays water over the entire roof of the orchard, the canopy delivery system would be built into the fixed (“solid-set”) trellis system in order to simultaneously deliver inputs orchard-wide.

“This system would remove tractor operators from close proximity with pesticides, so there would be even further reduction of health risks than there already is with our modern, soft pest control chemicals,” said Brunner, who is leading WSU’s efforts on the project. “We may also be able to get better efficacy from existing pest control materials by reducing chemical drift and application rates.” Improving efficacy and reducing pesticide application rates means lower costs for growers–and improved environmental safety for orchard workers as well as consumers.

Brunner said the solid-set canopy delivery project was based on a small-scale proof-of-concept demonstration done by ag engineers at Cornell University in New York and Michigan State University. Scientists from all three institutions are being funded by a two-year grant from USDA.

“We’re taking a three-pronged approach,” Brunner said. “There are engineering problems to work out, such as optimizing the design of emitters. We are collaborating with Qin Zhang and his team at the Center for Precision and Automated Agricultural Systems at WSU’s Irrigated Agriculture Research and Extension Center in Prosser.”

The emitters will need to blow spray up into tree foliage rather than onto the ground, and also be tested for drift. “We’ll add a dye to the spray,” Brunner said,” which will allow us to detect movement of spray off site. The dye will also enable us to quantify coverage within the orchard.” Zhang and his team have already developed sophisticated computer modeling techniques that will enable them to perform preliminary testing of proposed emitter designs in virtual orchards, thus cutting down costs and speeding up development time.

Another aspect of the project is economic. “Unless we can develop a system that beats the cost of the way things are done now, no one will adopt the technology,” Brunner said. He is hopeful that the new delivery method will be a winner. “Work in Michigan test plots indicates that large blocks could be treated in just a few minutes,” he said. The ability to treat 20 acres in minutes rather than hours would be a quantum leap in efficiency over tractor-delivered spraying.

The system should be able to do much more than deliver pest control chemicals, Brunner said. “We’re going to be looking at horticultural practices with our colleague Matt Whitting at WSU’s research center in Prosser,” he said. Blossom and fruit thinners, used to maintain optimal fruit size and quality, could also be delivered throughout large orchards using this system, as could sunburn protection and tree nutrients, adding further economic incentive for growers to adopt the system.

“We’re in the planning stages right now, with work beginning later this month,” Brunner said. “We are talking to industry professionals to see what they would want from this system, as well as to understand what they consider the barriers to adoption. And we’re talking with irrigation companies to get help with developing infrastructure and designing new emitters. Next spring, we’ll be installing what we’ve developed over the previous fall and winter in test plots here in Wenatchee as well as in Prosser, and possibly in commercial orchards.”

–Brian Clark

Learn more about the partnership between WSU and the Washington tree fruit industry by visiting http://treefruit.wsu.edu/.

CAHNRS is more than agriculture. With 24 majors, 19 minors, and 27 graduate level programs, we are one of the largest, most diverse colleges at WSU. CAHNRS Cougs are making a difference in the wellbeing of individuals, families, and communities, improving ecological and economic systems, and advancing agricultural sciences.

FACTS

Opportunity

CAHNRS has 39 student clubs and organizations to enhance student experiences and opportunities.


Students

Fall undergradsUndergraduate Studies

Check out every department and program CAHNRS has to offer, from Interior Design to Agriculture to Wildlife Ecology. We have 13 departments and schools to prepare you for your chosen career.

Grad student dogGraduate Studies

Students have a variety of options to pursue masters and doctoral degrees. Many of these have very specific background requirements, so we suggest exploring the individual programs for academic guidelines.

CTLLCenter for
Transformational
Learning & Leadership

The CTLL is a student, faculty, alumni and industry partner collaboration for high quality learning and leadership beyond the classroom.










CAHNRS Office of Research

Agricultural Research Center

Mission Statement

The goal of the Washington State University CAHNRS Office of Research is to promote research beneficial to the citizens of Washington. The Office of Research recognizes its unique land-grant research mission to the people of Washington and their increasing global connections. The CAHNRS Office of Research provides leadership in discovering and applying knowledge through high-quality research that contributes to a safe and abundant food, fiber, and energy supply while enhancing the sustainability of agricultural and natural resource systems.

Featured Research

By Sylvia Kantor, College of Agricultural, Human & Natural Resource Sciences

A new study by researchers at Washington State University shows that mechanical harvesting of cider apples can provide labor and cost savings without affecting fruit, juice, or cider quality.
The study, published in the journal HortTechnology in October, is one of several studies focused on cider apple production in Washington State. It was conducted in response to growing demand for hard cider apples in the state and the nation…MORE

SubsurfaceIrrigationWSU wins national award for water-saving research

By Sylvia Kantor, College of Agricultural, Human & Natural Resource Sciences

Water scarcity – one of the toughest challenges predicted for the 21st century – is being addressed by Washington State University. As part of a multistate research program, WSU is among 19 land-grant universities honored recently for their efforts to help farmers irrigate their land more efficiently, especially during droughts and water shortages.
“A safe, reliable supply of water is inextricably linked to food security,” said Sonny Ramaswamy, director of the USDA National Institute of Food and Agriculture…MORE

Apples-USDA-ARS-350An apple a day could keep obesity away

By Sylvia Kantor, College of Agricultural, Human & Natural Resource Sciences

PULLMAN, Wash. – Scientists at Washington State University have concluded that nondigestible compounds in apples – specifically, Granny Smith apples – may help prevent disorders associated with obesity. The study, thought to be the first to assess these compounds in apple cultivars grown in the Pacific Northwest, appears in October’s print edition of the journal Food Chemistry. “We know that, in general, apples are a good source of these nondigestible compounds but there are differences in varieties,” said food scientist Giuliana Noratto, the study’s lead researcher. “Results from this study will help consumers to discriminate between apple varieties that can aid in the fight against obesity.” MORE

Cooper-500New “magnifying glass” helps spot delinquency risks

By Rebecca E. Phillips, University Communications

PULLMAN, Wash. – Drug abuse, acts of rampage – what’s really the matter with kids today? While there are many places to lay blame – family, attitude, peers, school, community – a new study shows that those risks vary in intensity from kid to kid and can be identified.

Scientists at Washington State University and Pennsylvania State University have found a way to spot the adolescents most susceptible to specific risk factors for delinquency MORE

Beef-cattle-from-iStock-photos-500Food labels can reduce environmental impacts of livestock production

 “It’s important to know that small changes on the consumer side can help, and in fact may be necessary, to achieve big results in a production system,” said Robin White, lead researcher of a Washington State University study appearing in the journal Food Policy. MORE





Extension

With 39 locations throughout the state, WSU Extension is the front door to the University. Extension builds the capacity of individual, organization, businesses and communities, empowering them to find solutions for local issues and to improve their quality of life. Extension collaborates with communities to create a culture of life-long learning and is recognized for its accessible, learner-centered, relevant, high-quality, unbiased educational programs.

MudflatImpact: Burrowing Shrimp and Invasive Eelgrass

Shellfish production in Washington is a $60 million a year industry. Several major pests plague this industry, resulting in major crop loss. One of the most important pests is subterranean burrowing shrimp. These shrimp bioturbate (stir up) the sediment, causing the oysters to sink and die. For the past 60 years the industry has been using the insecticide Sevin to control this pest, but due to lawsuits its use was phased out in 2012. Without alternative control for shrimp, tens of millions of dollars in annual crop revenue will be lost and the industry will quickly lose its economic viability in southwestern Washington.

PoultryFarmImpact: The National Livestock and Poultry Environmental Learning Center

The Environmental Protection Agency has identified agriculture as the leading contributor of pollutants to the nation’s rivers, streams, lakes, and reservoirs. These reports often do not separate animal agriculture from other agricultural enterprises, but they do note that pathogens, nutrients, and oxygen-depleting substances associated with manure are three of the top five pollutants. Some emerging issues related to manure management include: endocrine disruptors (hormones), pharmaceuticals (antimicrobials), and antibiotic resistance in bacteria. Adopting farm practices that minimize the environmental impact is important for food safety.

BiosolidsImpact: Biosolids and Compost

Biosolids are the solids produced during municipal wastewater treatment. Composts are made from a variety of organic materials, including both urban and agriculture sources such as yard trimmings, biosolids, storm debris, food waste or manure, and food processing residues. While these materials have traditionally been viewed as waste, they can play a valuable role as soil amendments in urban and agricultural settings. They provide nutrients and organic matter and they sequester carbon, thereby conserving resources, restoring soils, and combating climate change.

Alumni & Friends

The WSU College of Agricultural, Human, and Natural Resource Sciences (CAHNRS) Office of Alumni & Friends is a service unit dedicated to promoting philanthropic support for the college’s research, teaching, and extension programs.

CAHNRS seeks $190 million through the Campaign for WSU. This unprecedented fundraising goal is managed through the CAHNRS Office of Alumni and Friends. If you would like to learn more about the CAHNRS’s fundraising priorities, please explore our website or meet the team.

Funding Priorities

Through the Campaign for Washington State University, CAHNRS and WSU Extension will play a major role in defining answers to complex issues through truly big ideas—feeding the world, powering the planet, and ensuring the health and well-being of children, families, and communities. See below to learn more about how we are addressing these issues in our strategic and on-going  initiatives and development of world-class students.

Wine_grapes03
Wine
renaissance
Organics
lentils
Pulse Crops
Mary Kay Patton
Learning & Leadership (CTLL)
WA38-RFP-1
Tree Fruit
wheat-detail
Grain
AMDT
AMDT

CAHNRS Alumni & Friends
PO Box 646228
Pullman, WA 99164-6228
PH: 509-335-2243
alumni.friends@wsu.edu

 



Faculty & Staff

Important Dates and Deadlines

Space Inventory Updates

-Due to the Dean’s Office December 1, 2014

Professional and Retraining Leave Guidelines

-Due to the Dean’s Office December 22, 2014

A-Z Index of Faculty and Staff Resources:

  • Click letters to sort alphabetically
  • Click individual items to view or download

Contact Dean’s Office:
Hulbert 421
PO Box 646242
Pullman WA 99164-6242
deans.cahnrs@wsu.edu
509-335-4561

CougStatue








Washington State University

How many varieties of wheat has WSU developed?

Correct!

Incorrect

Sentence or two with more info about the subject.