College of Agricultural, Human, and Natural Resource Sciences

Regenerating Pixie is Important Step in Grasping Grape Genetics

Understanding the grape genome in all its vast variety will translate into sustainable viticulture practices and a deeper understanding of wine quality. Wine grape growers have been plagued by an economically devastating pest, phylloxera, which has necessitated the replacement of almost all vines with new ones grown on pest-resistant rootstocks. Fungal diseases are not only an economic threat but an environmental one as well, since heavy fungicide treatments are required to beat back the spread of powdery mildew.

Graduate student Kathie Nicholson holds regenerated Pixie grape plants. Photo by Brian Charles Clark/WSU.
Graduate student Kathie Nicholson holds regenerated Pixie grape plants. Photo by Brian Charles Clark/WSU.

Getting a grip on grape genetics requires not just the sequencing of entire genomes but detailed pictures of which genes do what. To get that information, scientists need a way to quickly grow sample plants that have been genetically transformed. Transformation means that a particular gene is silenced or added to the organism in order to learn what effect the change has on the plant.

“We need regeneration in order to do transformation,” said Kathie Nicholson, a doctoral student working in horticultural genomicist Amit Dhingra’s lab. “But it’s been hard to find a reliable method of regenerating grape in the lab.” Regeneration is a carefully controlled laboratory technique in which whole plants are grown from a few cells.

Nathan Tarlyn, one of Nicholson's co-authors, working on a plant tissue culturing project. Photo by Brian Charles Clark/WSU.
Nathan Tarlyn, one of Nicholson’s co-authors, working on a plant tissue culturing project. Photo by Brian Charles Clark/WSU.

Nicholson is the lead author of a paper that outlines a grape regeneration technique she and her colleagues developed using Pixie, a dwarf variety that flowers continuously and reaches maturity in just a few months. Only available since 2006, Pixie appears to be an ideal candidate as a grape “lab rat”: it grows quickly, does well in the greenhouse, takes up very little space and, now, can be regenerated reliably. In other words, Nicholson and her team’s work is an important step forward in the development of a tool that can be used to understand grape genetics.

“Technically, traditional breeding is genetic transformation,” Nicholson said, but traditional breeding is like taking a slow boat to an uncertain shore: you don’t know when you’re going to get there and you can never be sure where you are going. With the systematic exploration of gene function, Nicholson said, researchers will be able to zero in on the precise factors that give a plant resistance to certain diseases, the ability to withstand stresses like cold and drought, and the ability to produce the combination of complex chemicals that are so prized by winemakers.

Granted, Nicholson said, Pixie may not be an ideal model for studying wine grape genetics (although Pixie was developed from Pinot Meunier, an important grape used in the production of champagne.) “That’s why we are trying the same regeneration protocol on Chardonnay and Merlot,” she said.

Plants have the ability to regenerate themselves from a single cell. This ability, called totipotency, is sometimes compared to the ability of animal stem cells (which are pluripotent) to differentiate themselves into the wide variety of cells in an organism. A plant cell can divide, differentiate, and become the cells of shoots, roots, and leaves. This, anyway, is the theory: getting a few plant cells to differentiate and grow into mature plants in the lab is much more difficult.

Nicholson and her colleagues experimented with a variety of mixes of plant growth hormones and regimes of light and dark in order to find the sweet spot that encouraged the regeneration of Pixie. Starting with a tiny piece of leaf from the very top of a plant, she and her team found that a particular combination of stress-easing dark, a particular ratio of hormones, and a nutrient medium coaxed the cells to regrow into new Pixie plants.

Nicholson did the regeneration work as part of her Master’s degree program. Now, as a doctoral student, she is continuing her investigation of regeneration techniques, while also working to explore the genetic differences between wine grape varieties.

Brian Clark

This article is based in part on a paper by Nicholson et al. in Plant Cell, Tissue and Organ Culture and available online at http://bit.ly/Q5JyZ6.

Read more about Pixie in Voice of the Vine, WSU’s wine science e-newsletter for wine lovers: June 24, 2010 and Oct. 30. 2008.

Leave a Reply

Neither your email address nor comment will be published. Required fields are marked *

CAHNRS is more than agriculture. With 24 majors, 19 minors, and 27 graduate level programs, we are one of the largest, most diverse colleges at WSU. CAHNRS Cougs are making a difference in the wellbeing of individuals, families, and communities, improving ecological and economic systems, and advancing agricultural sciences.

Featured Event

Illustration of a woman holding wine near a music band. Text over the image reads: The Auction of Washington Wines Wine and Music Festival, WSU Tri-Cities Campus, June 10, Saturday 6 pm. Learn More. Support Wine.

FACTS

Diversity

With 24 majors, 19 minors, and 27 graduate level programs, CAHNRS is one of the largest, most diverse colleges at WSU.

Scholarships

CAHNRS students are awarded more than $600,000 in scholarships annually.

Discovery

CAHNRS leads in discovery through its high-quality research programs. In 2014, CAHNRS received research funding exceeding $81.5M. This accounts for nearly 40% of all research funding received by WSU.  

Opportunity

CAHNRS has 39 student clubs and organizations to enhance student experiences and opportunities.

Job Opportunities


4-H Youth Development Program Associate Director (pdf)
Position # 124955



CAHNRS Academic Programs

Fall undergradsUndergraduate Studies

Check out what our academic departments and programs have to offer, from Interior Design to Agriculture to Wildlife Ecology. We have 13 departments and schools to prepare you for your chosen career.

Grad student dogGraduate Studies

Students have a variety of options to pursue masters and doctoral degrees. Many of these have very specific background requirements, so we suggest exploring the individual programs for academic guidelines.

CTLLCenter for
Transformational
Learning & Leadership

The CTLL is a student, faculty, alumni and industry partner collaboration for high quality learning and leadership beyond the classroom.

 

Inspiring Teamwork - Arron Carter pic

Inspiring Teamwork – Arron Carter

It started with a car, a ’69 Corvette Stingray to be exact.

When Arron Carter, the director of the Washington State University Winter Wheat Breeding Program, was in high school his agricultural teacher had a ’69 Corvette Stingray. Every year this teacher would let his favorite senior take the car to senior prom. Carter had never taken an agriculture class before, but he knew he wanted to drive that car.

“Well, if I’m going to be the favorite senior,” Carter said to himself, “I’d better start taking some ag classes.”…

Read More: Inspiring Teamwork – Arron Carter

 










CAHNRS Office of Research

Agricultural Research Center

Mission Statement

The goal of the Washington State University CAHNRS Office of Research is to promote research beneficial to the citizens of Washington. The Office of Research recognizes its unique land-grant research mission to the people of Washington and their increasing global connections. The CAHNRS Office of Research provides leadership in discovering and applying knowledge through high-quality research that contributes to a safe and abundant food, fiber, and energy supply while enhancing the sustainability of agricultural and natural resource systems.

Research Update

Washington State University’s screening continues to find no evidence of glyphosate herbicide resistance in Pacific Northwest wheat varieties

In each of the last three years (2014, 2015 and 2016), the field screening process has involved over 80 varieties, 2,000 advanced breeding lines and more than 35,000 individual plots from WSU cereal breeding and variety evaluation programs. Collectively, varieties included in these trials represent over 95 percent of the wheat acreage planted in Washington.

Featured Research

Want fries with that? Stealth potato virus threatens industry

Newly emerged viruses threaten the U.S. potato industry, including potatoes grown in Washington. Several newly evolved strains of the disease known as potato virus Y, or PVY, can render potatoes unmarketable and reduce crop yield. What’s worse is the new viruses are particularly difficult to detect with the naked eye.

Horned larks undeterred by efforts to protect canola seedlings

Horned larks are turning up in droves near Lind, Wash. and decimating newly planted winter and spring canola fields despite multiple efforts to deter them.

In search of the perfect steak

Imagine taking your first bite of a $40 rib-eye steak—only to chew on beef that’s as tough as shoe leather. Talk about disappointment! “A tough steak is not a pleasant experience,” says Frank Hendrix, a WSU Extension Educator and animal scientist.

Workshops to discuss changing water forecast for Columbia Basin

How changing water availability in the Columbia River Basin could affect people, farms and fish is the focus of a series of free public workshops in June. Scheduled for June 21, 22 and 23 in Richland, Wenatchee and Spokane, the workshops give a first look at the 2016 Columbia River Basin Long-Term Water Supply and Demand Forecast.

After landslide, communities rewarded for resilience

Two years after the deadly landslide that devastated the Oso, Wash., area, the towns of Darrington and Arlington were announced April 27 as finalists in the America’s Best Communities (ABC) competition.

$11M funds food safety tech transfer to markets

WSU aims to meet growing demand for safe, high quality, additive-free packaged foods thanks to two recent investments in innovative food processing technology based on microwave energy.




Alumni & Friends

Welcome to alumni, friends, and supporters of the College of Agricultural, Human, and Natural Resource Sciences (CAHNRS). You are a core part of our CAHNRS Coug family and have made major impacts in our college, communities, and throughout the world. We recognize only a handful of them here.

More than 9,000 alumni and friends contributed to our Campaign for WSU, the most ambitious fundraising effort in university history. The campaign concluded in 2015 with $215 million and endless amounts of impact. Here is a glimpse of what transpired in the Campaign.

Although the campaign concluded, momentum continues to make a difference in our land-grant mission and education. On-going investment in time and resources from our alumni and friends helps to advance our best programs, attract the most talented faculty, and support our brightest students.

There are so many ways to stay involved with CAHNRS. Share your news in the college’s magazine ReConnect. Get involved with student success or support our college as whole by making a gift to the CAHNRS Excellence Fund.

 

Contact Us

CAHNRS Alumni & Development
PO Box 646228
Pullman, WA 99164-6228
PH: 509-335-2243
alumni.friends@wsu.edu







Faculty & Staff

Important Dates and Deadlines

 

A-Z Index of Faculty and Staff Resources:

  • Click letters to sort alphabetically
  • Click individual items to view or download

Contact Dean’s Office:
Hulbert 421
PO Box 646242
Pullman WA 99164-6242
cahnrs.deans@wsu.edu
509-335-4561

Lisa Johnson:
Assistant to the Dean
Hulbert 421C
PO Box 646242
Pullman WA 99164-6242
janowski@wsu.edu
509-335-3590







How many varieties of wheat has WSU developed?

Correct!

Incorrect

Sentence or two with more info about the subject.